
AUTO LAYOUT IS A UNICORN…

…WILD AND FREE.

MAGIK AWAITS, COME AND SEE.

Hi there folks!

-Art credit: Elinor, 5 years old.

ABOUT ME

SousChef

100K+ Users

Mac, iPhone, and iPad
versions

300K+ User Contributed
Recipes

Recently acquired by a UK
Company

YOUR DIGITAL COOKING ASSISTANT

Nice Mohawk

Ita

Universal iOS App

iCloud Documents
and Data

Hit Top 100 in USA

Recently had a 75K
d/l day during
promotion

A FINE LIST-MAKING APP

Ita 2

iOS 7 re-envisioning

Slick inline editing
mode

Built on Text Kit

In-app settings

UIDynamics

A FINER LIST-MAKING APP

Reverb

SF Bay Area Client

Interesting move into
the News discovery
market

NML hired to do
animations and
social integrations,
push notifications

iPad only

A COMPLETELY NEW WAY TO DISCOVER NEWS

THE FINE EDGE

nicemohawk.com/blog
⚛

AUTO LAYOUT

This is how it’s going to go.
I'm not really going to talk about the wiz-bang stuff.

We're mostly going to talk about the pain in the ass, kind of esoteric stuff.

Auto Layout Basics

Animation

Debugging

Advanced Stuff

DISCLAIMER:
AUTO LAYOUT IS SOMETIMES HARD AND I’M IN IT WITH YOU, I'VE REVERTED AT

LEAST A FEW PROJECTS TO FRAMES, SPRINGS AND STRUTS.

Auto Layout

Auto Layout is sometimes referred to as constraint based layout system.

You create a set on constraints and the Auto Layout Engine solves them.

This means you need an unambiguous set of constraints.

Which usually means two or more constraints for each axis.

DISCLAIMER:
AUTO LAYOUT IS SOMETIMES HARD AND I’M IN IT WITH YOU, I'VE REVERTED AT

LEAST A FEW PROJECTS TO FRAMES, SPRINGS AND STRUTS.

The Architecture

Update
Constraints

Layout
Views

Display
Views

View Controller

Bottom up

Subview Constraints

Container View Constraints

View Controller Level Constraints

Trigger with -(void)setNeedsUpdateConstraints;

Override point:

The Architecture Update
Constraints

Layout
Views

Display
Views

Container View

Subview

- (void)updateViewConstraints;
// Overrides must call super or send -updateConstraints
 to the view.

View Controller

Top down

Layout View Controller’s view

Layout Container View

Layout Subview

Trigger with -(void)setNeedsLayout;

Override point:

The Architecture Update
Constraints

Layout
Views

Display
Views

Container View

Subview

- (void)layoutSubviews;
// Overrides must call super

Tip: Force layout with -(void)layoutIfNeeded

Tip: Force layout with
-(void)layoutIfNeeded

View Controller

Top down

Draw View Controller’s view

Draw Container View

Draw Subview

Trigger with -(void)setNeedsDisplay;

Override point:

The Architecture Update
Constraints

Layout
Views

Display
Views

Container View

Subview

- (void)drawRect:(CGRect)rect;
// Overrides *may* call super.

THINGS YOU SHOULD KNOW
…IF YOU’RE A BABY UNICORN

Constraints!

Constraints!

[NSLayoutConstraint constraintsWithVisualFormat:@“H:|-[view]-|"
 options:0
 metrics:nil
 views:NSDictionaryOfVariableBindings(view)];

Constraint Maths

Constraints also support >=, <= and priorities

attribute1 = multiplier * attribute2 + constant

view.x = superview.leading + 20

Constraints not frames!

Do not edit view.frame manually
Unless you want a migraine.

Reading from view.frame is fine, just do it after -layoutSubviews

Alignment rects give you a lot of flexibility

view.alignmentRectInsets

-alignmentRectForFrame:

-frameForAlignmentRect:

Alignment Rects not frames!

frame

alignmentRect

Interface Builder
Interface Builder in Xcode 5 is usable.

Auto Layout tools are hidden stored here:

Now supports ambiguous layouts,  
easy alignment and some nice shortcuts

Use the Auto Layout Issue pane to resolve issues. 
It looks like this:

Tip: Avoid resizing
controls, reset to their intrinsic

size with Size To Fit.

Alignment

Basic Constraints

Constraint Issues

Resizing Behavior

In code
Make sure you set  
view.translatesAutoresizingMaskIntoConstraints = NO;

Add constraints using either:

 
+ (id)constraintWithItem:(id)view1
 attribute:(NSLayoutAttribute)attr1
 relatedBy:(NSLayoutRelation)relation
 toItem:(id)view2 attribute:(NSLayoutAttribute)attr2
 multiplier:(CGFloat)multiplier
 constant:(CGFloat)c; 
 
 
 
+ (NSArray *)constraintsWithVisualFormat:(NSString *)format
 options:(NSLayoutFormatOptions)opts
 metrics:(NSDictionary *)metrics
 views:(NSDictionary *)views;

Tip: Use
NSDictionaryOfVariableBindings()
to create the views dictionary.

or

Starting a new project with Auto
Layout

New Xcode projects have Auto Layout turned on by default.

Storyboards: create as many constraints as possible in IB

Constraints are mutable so hook up IBOutlets to them

Interface Builder turns off autoresizing automatically for views created
there.

Feel free to still opt out of Auto Layout for some views. You’re not
doing anything wrong.

Converting old projects to Auto
Layout

Tip: This Could be painful.

Set translatesAutoresizingMaskIntoConstraints = NO; on views
you want to opt into Auto Layout.

Only edit the frame on views that are not part of auto layout.

Implement + (BOOL)requiresConstraintBasedLayout for custom
views.

Multiple Screen Size Support

Rotation is something we already know how to deal with.

Another thing we already do is support iPad and iPhone screen sizes.

Multiple screen sizes are just a more general 
case. Tip: You can even

use a single storyboard for
both iPad and iPhone. If

you’re craaazy!

DEMO

ANIMATING WITH AUTO LAYOUT

Two Options
Animate your constraints

Some claim it’s too slow.

Limited on what you can do since it has to be defined as a
constraint.

Animate with CoreAnimation

CoreAnimation layer animations don’t invalidate view frames.

Feels a bit dirty, like you’re two timing Auto Layout.

Simple once you find your target constraint

One easy way is to use outlets.

Animating Constraints

@property IBOutlet NSLayoutConstraint *animatedConstraint;
 
…
 
self.animatedConstraint.constant = change;

[UIView animateWithDuration:0.5f animations:^{
 [self.view layoutIfNeeded];
}];

Animating with CoreAnimation

Seems best for temporary flouting of auto layout constraints
CABasicAnimation* animation = [CABasicAnimation
 animationWithKeyPath:@“translation"];
!

animation.duration = 0.5f;
animation.autoreverses = YES;
animation.toValue = [NSValue
 valueWithCATransform3D:CATransform3DMakeTranslation(100, 100, 0)];
!

[viewToAnimate.layer addAnimation:animation forKey:nil];

Animating Transforms
Container View with minimal constraints

Can set translatesAutoresizingMaskIntoConstraints = YES; for
views inside this container. Then layout layout frames.

CGAffineTransform animationTransform =
 CGAffineTransformMakeScale(scaleFactor, scaleFactor));
!

[UIView animateWithDuration:0.5f animations:^{
 viewToTransform.transform =
 CGAffineTransformConcat(viewToTransform.transform, animationTransform);
}];

ANIMATION DEMO

DEBUGGING AUTO LAYOUT

What do I do with those little orange
lines in Interface Builder?

Auto Layout Issue Navigator

Took me forever to find this on my
own.

It then took me forever to start using
the icons on the right.

Editor ›❯ Canvas ›❯ Show Involved Views
For Selected Constraints

Editor ›❯ Canvas ›❯ Show Intrinsic Size
Constraints Contributing To Ambiguity.

Constraints
If you see NSLayoutResizingMaskConstraints in the console you
probably should turn translatesAutoresizingMaskIntoConstraints
off.

Reference Apple’s “Resolving Issues” section of their Auto Layout
Programming Guide and look for the problem you’re having.

Use UIView’s constraint debugging methods: 
- (NSArray *)constraintsAffectingLayoutForAxis:(UILayoutConstraintAxis)axis 
- (BOOL)hasAmbiguousLayout 
- (void)exerciseAmbiguityInLayout

NSLayoutConstraint
Add category methods to improve debug output.

Justin Williams suggests something like this:
#ifdef DEBUG!
- (NSString *)constraint_description
{
 NSString *description = [self description];
!

 return [description stringByAppendingFormat:@"(%@, %@)",
 [self.firstItem restorationIdentifier],
 [self.secondItem restorationIdentifier]];
}
#endif!

DEBUGGING DEMO

THINGS YOU SHOULD KNOW
…IF YOU’RE A BAD-ASS UNICORN

Custom Views

Implement -updateConstraints to build constraints for your view’s
content or - (void)updateViewConstraints at the view controller level.

Implement -requiresConstraintBasedLayout if you don’t degrade
gracefully.

Make sure your alignment rect is correct given content ornamentation.

If you have text content: - (UIView *)viewForBaselineLayout

Content Size

Define your content size with -intrinsicContentSize

You must notify Auto Layout if this changes by calling:  
-invalidateIntrinsicContentSize

Content hugging

Content compression resistance

Spacer Views

This is the 1x1 transparent gif of Auto
Layout

Allows for lots of complex layouts.

Read Apple’s “Auto Layout By
Example” Documentation.

-Art credit: Elinor, 5 years old.

1. Unicorns can be captured only by unfair
means, and their single horn is said to
neutralize poison.

2. One popular method of hunting unicorns
involved entrapment by a virgin.

3. When Marco Polo saw a rhinoceros for
the first time, he thought it was a
unicorn.

Q&A

Talk notes: http://nicemohawk.com/talks/auto-layout/

http://nicemohawk.com/talks/auto-layout/

Ben Lachman 
Nice Mohawk Limited

@blach 
ben@nicemohawk.com

Talk notes: http://nicemohawk.com/talks/auto-layout/

mailto:ben@nicemohawk.com
http://nicemohawk.com/talks/auto-layout/

Q&A

Talk notes: http://nicemohawk.com/talks/auto-layout/

WHO USES AUTO LAYOUT ALREADY?
I WANT A MORE CONVENIENT WAY TO FIDDLE WITH AUTO LAYOUT. CATEGORIES
ANYONE?
HAS ANYONE INTEGRATED UIDYNAMICS AND AUTO LAYOUT?

http://nicemohawk.com/talks/auto-layout/

Ben Lachman 
Nice Mohawk Limited

@blach 
ben@nicemohawk.com

Talk notes: http://nicemohawk.com/talks/auto-layout/

mailto:ben@nicemohawk.com
http://nicemohawk.com/talks/auto-layout/

